Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nature ; 626(8000): 792-798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297125

RESUMO

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Assuntos
Amônia , Produção Agrícola , Fertilizantes , Amônia/análise , Amônia/metabolismo , Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Conjuntos de Dados como Assunto , Ecossistema , Fertilizantes/efeitos adversos , Fertilizantes/análise , Fertilizantes/estatística & dados numéricos , Aprendizado de Máquina , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , Mudança Climática/estatística & dados numéricos
3.
Nature ; 613(7942): 77-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600068

RESUMO

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Assuntos
Produção Agrícola , Produtos Agrícolas , Poluição Ambiental , Nitrogênio , Solo , Humanos , Análise Custo-Benefício , Ecossistema , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Produção Agrícola/economia , Produção Agrícola/métodos , Produção Agrícola/tendências
4.
Nature ; 611(7934): 81-87, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36224391

RESUMO

To meet the growing food demand while addressing the multiple challenges of exacerbating phosphorus (P) pollution and depleting P rock reserves1-15, P use efficiency (PUE, the ratio of productive P output to P input in a defined system) in crop production needs to be improved. Although many efforts have been devoted to improving nutrient management practices on farms, few studies have examined the historical trajectories of PUE and their socioeconomic and agronomic drivers on a national scale1,2,6,7,11,16,17. Here we present a database of the P budget (the input and output of the crop production system) and PUE by country and by crop type for 1961-2019, and examine the substantial contribution of several drivers for PUE, such as economic development stages and crop portfolios. To address the P management challenges, we found that global PUE in crop production must increase to 68-81%, and recent trends indicate some meaningful progress towards this goal. However, P management challenges and opportunities in croplands vary widely among countries.


Assuntos
Produção Agrícola , Produtos Agrícolas , Fósforo , Desenvolvimento Sustentável , Produção Agrícola/métodos , Produção Agrícola/tendências , Produtos Agrícolas/classificação , Produtos Agrícolas/metabolismo , Fazendas , Nutrientes/metabolismo , Fósforo/metabolismo , Desenvolvimento Sustentável/tendências , Internacionalidade , Fatores Socioeconômicos , Bases de Dados Factuais
5.
Sci Rep ; 12(1): 1638, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102220

RESUMO

Almost half of the Burkinabe population is moderately or severely affected by food insecurity. With climate change, domestic food production may become more under pressure, further jeopardizing food security. In this study, we focus on the production of maize, sorghum and millet as staple cereal crops in Burkina Faso to assess food availability as one component of food security. Based on a statistical weather-driven crop model, we provide a within-season forecast of crop production 1 month before the harvest. Hindcast results from 1984 to 2018 produce an r2 of 0.95 in case of known harvest areas and an r2 of 0.88 when harvest areas are modelled instead. We compare actually supplied calories with those usually consumed from staple crops, allowing us to provide early information on shortages in domestic cereal production on the national level. Despite the-on average-sufficient domestic cereal production from maize, sorghum and millet, a considerable level of food insecurity prevails for large parts of the population. We suggest to consider such forecasts as an early warning signal for shortages in domestic staple crop production and encourage a comprehensive assessment of all dimensions of food security to rapidly develop counteractions for looming food crises.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Insegurança Alimentar , Abastecimento de Alimentos , Milhetes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Burkina Faso , Mudança Climática , Previsões , Humanos , Modelos Teóricos , Fatores de Tempo , Tempo (Meteorologia)
7.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740974

RESUMO

Intensive systems with two or three rice (Oryza sativa L.) crops per year account for about 50% of the harvested area for irrigated rice in Asia. Any reduction in productivity or sustainability of these systems has serious implications for global food security. Rice yield trends in the world's longest-running long-term continuous cropping experiment (LTCCE) were evaluated to investigate consequences of intensive cropping and to draw lessons for sustaining production in Asia. Annual production was sustained at a steady level over the 50-y period in the LTCCE through continuous adjustment of management practices and regular cultivar replacement. Within each of the three annual cropping seasons (dry, early wet, and late wet), yield decline was observed during the first phase, from 1968 to 1990. Agronomic improvements in 1991 to 1995 helped to reverse this yield decline, but yield increases did not continue thereafter from 1996 to 2017. Regular genetic and agronomic improvements were sufficient to maintain yields at steady levels in dry and early wet seasons despite a reduction in the yield potential due to changing climate. Yield declines resumed in the late wet season. Slower growth in genetic gain after the first 20 y was associated with slower breeding cycle advancement as indicated by pedigree depth. Our findings demonstrate that through adjustment of management practices and regular cultivar replacement, it is possible to sustain a high level of annual production in irrigated systems under a changing climate. However, the system was unable to achieve further increases in yield required to keep pace with the growing global rice demand.


Assuntos
Produção Agrícola/tendências , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Biomassa , Produção Agrícola/estatística & dados numéricos , Oryza/genética
9.
PLoS One ; 16(7): e0253872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197511

RESUMO

Technologies and practices that reduce the environmental impacts of US agriculture are well documented. Less is known about how best to encourage their adoption. We report on the results of a large randomized controlled trial conducted with nearly 10,000 agricultural producers in the United States. The experiment was embedded in US Department of Agriculture outreach efforts to improve soil conservation practices. USDA varied the content of mailings to test two sets of competing theories about outreach to agricultural producers. Contrary to conventional wisdom, we find no evidence that acknowledging the link between climate change and agricultural production discourages conservation action. Furthermore, we find that producers who were invited to a webinar were less likely to take any action to learn more about conservation practices than producers who were not told about the webinar, a result that runs counter to the popular wisdom that offering more options leads to more action.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Produção Agrícola/métodos , Fazendeiros/estatística & dados numéricos , Solo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Inquéritos e Questionários/estatística & dados numéricos , Estados Unidos , United States Department of Agriculture/estatística & dados numéricos
10.
J Sci Food Agric ; 101(15): 6311-6319, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33969880

RESUMO

BACKGROUND: Crop phenology change is co-determined by climate change and adaptation strategies, such as crop management, but their combined and isolated impacts on rice phenology are still unclear. Quantifying the impacts and identifying the main contributors are critical to food security under climate change. Thus we distinguished and quantified the relative contribution of climate change and crop management to rice (Oryza sativa L.) phenological changes in China from 1981 to 2010, using a first-difference multivariate regression method. RESULTS: Rice phenology has changed over the past 30 years in China. The mean length of the phenological stage from emergence to transplanting was shortened, whereas the mean length of the stage from transplanting to heading, from heading to maturity, was prolonged. The relative contribution of crop management was greater than that of climate change for single and late rice, which took up over 90% of the total change in certain phenology stages. Among the climatic factors, temperature was the dominant contributor, which accounted for more than 50% of the change in rice phenology. The stage from transplanting to heading of early rice and late rice had strongly negative sensitivities to increasing temperature. CONCLUSIONS: Crop management has offset the adverse effects of climate change on single and early rice phenology in China over the past 30 years to some extent, while further adaptation measures such as adjusting sowing date, shifting rice varieties, applying nitrogen fertilizer and irrigation should be applied to late rice in southern China, especially in a warmer future. © 2021 Society of Chemical Industry.


Assuntos
Mudança Climática , Produção Agrícola , Oryza/crescimento & desenvolvimento , China , Produção Agrícola/tendências , Fertilizantes/análise , Nitrogênio/metabolismo , Oryza/metabolismo , Estações do Ano , Temperatura
11.
Microbiol Res ; 248: 126763, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33892241

RESUMO

Ensuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g. reduced use of agrochemicals). Most governmental and inter-governmental agencies have highlighted the need for alternative approaches that harness natural resource to address this. Use of beneficial phytomicrobiome, (i.e. microbes intimately associated with plant tissues) is considered as one of the viable solutions to meet the twin challenges of food security and environmental sustainability. A diverse number of important microbes are found in various parts of the plant, i.e. root, shoot, leaf, seed, and flower, which play significant roles in plant health, development and productivity, and could contribute directly to improving the quality and quantity of food production. The phytomicrobiome can also increase productivity via increased resource use efficiency and resilience to biotic and abiotic stresses. In this article, we explore the role of phytomicrobiome in plant health and how functional properties of microbiome can be harnessed to increase agricultural productivity in environmental-friendly approaches. However, significant technical and translation challenges remain such as inconsistency in efficacy of microbial products in field conditions and a lack of tools to manipulate microbiome in situ. We propose pathways that require a system-based approach to realize the potential to phytomicrobiome in contributing towards food security. We suggest if these technical and translation constraints could be systematically addressed, phytomicrobiome can significantly contribute towards the sustainable increase in agriculture productivity and food security.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Segurança Alimentar , Microbiota , Produção Agrícola/métodos , Desenvolvimento Sustentável
12.
Curr Biol ; 31(5): R218-R220, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689712

RESUMO

Dima and Inzé discuss how Europe is lagging behind in embracing the potential of genome editing in crops and highlight how scientists can contribute to advising on effective science-based policies for more sustainable agriculture through genome editing.


Assuntos
Produção Agrícola , Produtos Agrícolas , Formulação de Políticas , Pesquisadores , Desenvolvimento Sustentável , Produção Agrícola/métodos , Produção Agrícola/tendências , Produtos Agrícolas/genética , Europa (Continente) , Edição de Genes , Desenvolvimento Sustentável/tendências
13.
J Sci Food Agric ; 101(1): 27-43, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32488859

RESUMO

European hazelnut (Corylus avellana L.) is a major species of interest for nutritional use within the Betulaceae family and its nuts are widely used throughout the world in the chocolate, confectionery, and bakery industries. Recently its cultivation has been expanded in traditional producer countries and established in new places in the southern hemisphere, including Chile, South Africa, and Australia. Introducing hazelnut in new environments could reduce its productivity, lead the trees to experience eco-physiological disorders, and expose the crop to high pressure from common and new pests and diseases. Thus, new approaches in cultivar choice guidance, in the sustainable orchard management and even in nut storage and kernel quality evaluation are urgently required to improve the hazelnut production and processing chain. The main objective of this study was to systematize the published information regarding recent findings about the cultural operations that directly influence nut and kernel quality, support varietal choice for new plantations, and list the recent advances in nut storage and in quality and safety evaluation. © 2020 Society of Chemical Industry.


Assuntos
Corylus/química , Produção Agrícola/métodos , Corylus/classificação , Corylus/crescimento & desenvolvimento , Produção Agrícola/instrumentação , Produção Agrícola/tendências , Inocuidade dos Alimentos , Humanos , Nozes/química , Controle de Qualidade
14.
PLoS One ; 15(10): e0240140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027300

RESUMO

In the context of supply-side structural reform, revealing the characteristics of spatial-temporal dynamics and influencing factors of China's apple production layout is of great significance to ensure apple supply and demand balance and timely adjustment of industrial policies and regional layout strategies. Based on national and provincial apple production data from 1978 to 2016, this study used the apple production concentration index to analyse the evolution characteristics of regional apple production patterns in China. A theoretical analysis framework was established and a spatial econometric model was used to quantitatively explore the influencing factors of China's apple production layout. The results showed that, first, since the reform and opening-up policy, a general trend of fluctuating growth was found for apple production in China. The centre of apple production layout moved in the southwest direction, with the shift from the Bohai Bay region to the Loess Plateau region. Second, apple production had a significant spatial correlation, while the degree of spatial agglomeration gradually decreased. Third, these changes were significantly influenced by apple comparative income, infrastructure, policies, and climatic conditions. Therefore, it is necessary to continue optimizing and adjusting the apple spatial layout to enhance the technological progress and economic effect of the apple industry and to ensure the stability and balance of regional supply and demand.


Assuntos
Produção Agrícola/tendências , Desenvolvimento Econômico/tendências , Malus , Modelos Econométricos , Políticas , China , Produção Agrícola/economia , Produção Agrícola/organização & administração , Produção Agrícola/estatística & dados numéricos , Desenvolvimento Econômico/estatística & dados numéricos , Pesquisa Empírica , Mudança Social , Análise Espaço-Temporal
15.
Nat Commun ; 11(1): 4295, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908130

RESUMO

Recent expansion of croplands in the United States has caused widespread conversion of grasslands and other ecosystems with largely unknown consequences for agricultural production and the environment. Here we assess annual land use change 2008-16 and its impacts on crop yields and wildlife habitat. We find that croplands have expanded at a rate of over one million acres per year, and that 69.5% of new cropland areas produced yields below the national average, with a mean yield deficit of 6.5%. Observed conversion infringed upon high-quality habitat that, relative to unconverted land, had provided over three times higher milkweed stem densities in the Monarch butterfly Midwest summer breeding range and 37% more nesting opportunities per acre for waterfowl in the Prairie Pothole Region of the Northern Great Plains. Our findings demonstrate a pervasive pattern of encroachment into areas that are increasingly marginal for production, but highly significant for wildlife, and suggest that such tradeoffs may be further amplified by future cropland expansion.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Custos e Análise de Custo/estatística & dados numéricos , Produção Agrícola/tendências , Produtos Agrícolas/economia , Animais , Biodiversidade , Borboletas , Produção Agrícola/economia , Produção Agrícola/estatística & dados numéricos , Dispersão Vegetal , Análise Espaço-Temporal , Estados Unidos
16.
PLoS One ; 15(9): e0239123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925982

RESUMO

Cultivated diversity is considered an insurance against major climatic variability. However, since the 1980s, several studies have shown that climate variability and agricultural changes may already have locally eroded crop genetic diversity. We studied pearl millet diversity in Senegal through a comparison of pearl millet landraces collected 40 years apart. We found that more than 20% of villages visited in 1976 had stopped growing pearl millet. Despite this, its overall genetic diversity has been maintained but differentiation between early- and late-flowering accessions has been reduced. We also found stronger crop-to-wild gene flow than wild-to-crop gene flow and that wild-to-crop gene flow was weaker in 2016 than in 1976. In conclusion, our results highlight genetic homogenization in Senegal. This homogenization within cultivated pearl millet and between wild and cultivated forms is a key factor in genetic erosion and it is often overlooked. Improved assessment and conservation strategies are needed to promote and conserve both wild and cultivated pearl millet diversity.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/genética , Evolução Molecular , Variação Genética , Pennisetum/genética , Conservação dos Recursos Naturais , Produção Agrícola/história , Produção Agrícola/estatística & dados numéricos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Flores/crescimento & desenvolvimento , Fluxo Gênico , História do Século XX , História do Século XXI , Senegal
17.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 838-848, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567267

RESUMO

DNA methylation is an epigenetic modification that forms an important regulation mechanism of gene expression in organisms across kingdoms. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. In this article, we briefly discuss DNA methylation in plants and summarize its functions and biological roles in regulating gene expression and maintaining genomic stability, plant development, as well as plant responses to biotic and abiotic stresses. We intended to provide a concise reference for further understanding of the mechanism of DNA methylation and potential applications of epigenetic manipulation for crop improvement.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Plantas , Produção Agrícola/tendências , Instabilidade Genômica , Plantas/genética , Pesquisa/tendências , Estresse Fisiológico
18.
Plant Sci ; 295: 110397, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32534613

RESUMO

Extreme heat events will challenge agricultural production and raise the risk of food insecurity. California is the largest agricultural producer in the United States, and climate change and extreme heat may significantly affect the state's food production. This paper provides a summary of the current literature on crop responses to extreme heat, with a focus on perennial agriculture in California. We highlight contemporary trends and future projections in heat extremes, and the range of plant responses to extreme heat exposure, noting the variability in plant tolerance and response across season, crop, and cultivar. We also review practices employed to mitigate heat damage and the capacity for those practices to serve as adaptation options in a warmer and drier future. Finally, we discuss current and future research directions aimed at increasing the adaptive capacity of perennial agriculture to the increased heat exposure anticipated with climate change. Collectively, the literature reviewed makes clear the need to understand crop responses and tolerances to heat within the context of climate change and climate extremes in order to sustain crop production, preserve agricultural communities, and bolster food security at local, national, and global scales.


Assuntos
Mudança Climática , Produção Agrícola/métodos , Produtos Agrícolas/fisiologia , Calor Extremo/efeitos adversos , California , Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento
19.
PLoS One ; 15(4): e0231764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32348336

RESUMO

Most business-as-usual scenarios for farming under changing climate regimes project that the agriculture sector will be significantly impacted from increased temperatures and shifting precipitation patterns. Perhaps ironically, agricultural production contributes substantially to the problem with yearly greenhouse gas (GHG) emissions of about 11% of total anthropogenic GHG emissions, not including land use change. It is partly because of this tension that Climate Smart Agriculture (CSA) has attracted interest given its promise to increase agricultural productivity under a changing climate while reducing emissions. Considerable resources have been mobilized to promote CSA globally even though the potential effects of its widespread adoption have not yet been studied. Here we show that a subset of agronomic practices that are often included under the rubric of CSA can contribute to increasing agricultural production under unfavorable climate regimes while contributing to the reduction of GHG. However, for CSA to make a significant impact important investments and coordination are required and its principles must be implemented widely across the entire sector.


Assuntos
Produção Agrícola/organização & administração , Produtos Agrícolas/metabolismo , Abastecimento de Alimentos , Efeito Estufa/prevenção & controle , Cooperação Internacional , Mudança Climática , Produção Agrícola/métodos , Produção Agrícola/tendências , Tomada de Decisões Gerenciais , Gases de Efeito Estufa/efeitos adversos , Oryza/metabolismo , Solo/química , Triticum/metabolismo , Zea mays/metabolismo
20.
Nat Commun ; 11(1): 1243, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144261

RESUMO

Many studies have estimated the adverse effects of climate change on crop yields, however, this literature almost universally assumes a constant geographic distribution of crops in the future. Movement of growing areas to limit exposure to adverse climate conditions has been discussed as a theoretical adaptive response but has not previously been quantified or demonstrated at a global scale. Here, we assess how changes in rainfed crop area have already mediated growing season temperature trends for rainfed maize, wheat, rice, and soybean using spatially-explicit climate and crop area data from 1973 to 2012. Our results suggest that the most damaging impacts of warming on rainfed maize, wheat, and rice have been substantially moderated by the migration of these crops over time and the expansion of irrigation. However, continued migration may incur substantial environmental costs and will depend on socio-economic and political factors in addition to land suitability and climate.


Assuntos
Aclimatação , Mudança Climática , Produção Agrícola/tendências , Produtos Agrícolas/fisiologia , Dispersão Vegetal , Irrigação Agrícola/estatística & dados numéricos , Irrigação Agrícola/tendências , Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Oryza/fisiologia , Temperatura , Triticum/fisiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...